\qquad

Calculus I

Professor Piotr Hajłasz
Practice Second Exam
Remember remember the 5th of November, 2014

Problem	Possible points	Score
1	20	
2	20	
3	20	
4	10	
5	10	
6	20	
Total	100	

Problem 1. (20p) Find the absolute maximum and minimum of $f(x)=x^{3}-x^{2}-x+2$ on $[0,2]$.

Problem 2. $(20=10+10 p)$ Find the limits
(a) $\lim _{x \rightarrow 1} \frac{\ln x}{\tan \pi x}$
(b) $\lim _{x \rightarrow 0+} x^{\cos x-1}$

Problem 3. $(20=10+10 p)$
(a) Find the inverse of $F(t)=13 e^{5 t}$.
(b) Show that the function $f(x)=2 x+\cos x$ is invertible and find $\left(f^{-1}\right)^{\prime}(1)$.

Problem 4. $(10=5+5 p)$ Using Newton's method for the approximation of $\sqrt[3]{7}$ regarded as a zero of the function $f(x)=x^{3}-7$:
(a) Find the general formula for x_{n+1} in terms of x_{n}.
(b) Find x_{2} if $x_{1}=2$.

Problem 5. (10p) A rectangle has two corners on the x-axis and the other two on the parabola $y=12-x^{2}$, with $y \geq 0$. What are the dimensions of the rectangle of this type with maximum area?

Exercise 6. (20p) Let $f(x)=\frac{x}{(x+1)^{2}}$.
(a) Find points of intersection of the graph with the x-axis and with the y-axis.
(b) Find vertical and horizontal asymptotes.
(c) Find intervals where the function is increasing/decreasing.
(d) Find maxima and minima.
(d) Find intervals where the function is concave up/down.
(e) Find inflection points.
(f) Use information from (a)-(e) to sketch the graph of the function. Clearly indicate the information obtained in (a)-(f) on the graph.

